ipython notebook是个好东西,它的另一优点就是可以在本地用浏览器,去远程连接服务器的计算资源,就类似于Rstudio公司推出的rstudio server的功能。下面记录一下配置步骤:
第一步:服务器上安装ipython系列,推荐是安装anaconda套件,非常方便。安装完毕后将路径加在PATH环境变量中。
第二步:设置notebook server。用在ipython中如下命令设置密码:
from IPython.lib import passwd
passwd()
记下生成的字符串。
第三步:创建一个ipython配置文件,比如起名叫myserver
ipython profile create myserver
vim ~/.ipython/profile_myserver/ipython_notebook_config.py
编辑文件,加入下面几项:
c = get_config()
c.IPKernelApp.pylab = 'inline' #启动inline模式
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False
c.NotebookApp.password = u'sha1:yourhashedpassword' #把第二步的密码考进来
c.NotebookApp.port = 9999 #自己设一个端口号
第四步:启动服务
ipython notebook --profile=myserver
最后你就可以在本地浏览器中登陆,输入密码,即可进入ipython notebook。
因为公司的数据库是Oracle的,所以下面的例子没有包括其它的数据库,不过方法类似。
最原始的连接数据库方式是cx_Oracle包,使用pip安装后import进来即可调用,出来的结果是一个list。
import cx_Oracle
conn = cx_Oracle.connect('user','password','ip/dbname')
cr = conn.cursor()
cr.execute('select * from table')
result = cr.fetchall()
cr.close()
conn.close()
对于数据分析而言,方便的调用方式是通过pandas封装的sql接口来做,这样出来的数据直接就是一个dataframe。使用它有几个前提要求
1 安装oracle瘦客户端
2 设置好环境变量,例如ORACLE_HOME和LD_LIBRARY_PATH
3 设置好tnsnames.ora
4 安装sqlalchemy包
设置好以后使用如下例:
import pandas as pd
from sqlalchemy import create_engine
engine = create_engine('oracle://user:password@service_name')
df = pd.read_sql_query('select * from table', engine)
第一步:服务器上安装ipython系列,推荐是安装anaconda套件,非常方便。安装完毕后将路径加在PATH环境变量中。
第二步:设置notebook server。用在ipython中如下命令设置密码:
from IPython.lib import passwd
passwd()
记下生成的字符串。
第三步:创建一个ipython配置文件,比如起名叫myserver
ipython profile create myserver
vim ~/.ipython/profile_myserver/ipython_notebook_config.py
编辑文件,加入下面几项:
c = get_config()
c.IPKernelApp.pylab = 'inline' #启动inline模式
c.NotebookApp.ip = '*'
c.NotebookApp.open_browser = False
c.NotebookApp.password = u'sha1:yourhashedpassword' #把第二步的密码考进来
c.NotebookApp.port = 9999 #自己设一个端口号
第四步:启动服务
ipython notebook --profile=myserver
最后你就可以在本地浏览器中登陆,输入密码,即可进入ipython notebook。
因为公司的数据库是Oracle的,所以下面的例子没有包括其它的数据库,不过方法类似。
最原始的连接数据库方式是cx_Oracle包,使用pip安装后import进来即可调用,出来的结果是一个list。
import cx_Oracle
conn = cx_Oracle.connect('user','password','ip/dbname')
cr = conn.cursor()
cr.execute('select * from table')
result = cr.fetchall()
cr.close()
conn.close()
对于数据分析而言,方便的调用方式是通过pandas封装的sql接口来做,这样出来的数据直接就是一个dataframe。使用它有几个前提要求
1 安装oracle瘦客户端
2 设置好环境变量,例如ORACLE_HOME和LD_LIBRARY_PATH
3 设置好tnsnames.ora
4 安装sqlalchemy包
设置好以后使用如下例:
import pandas as pd
from sqlalchemy import create_engine
engine = create_engine('oracle://user:password@service_name')
df = pd.read_sql_query('select * from table', engine)